If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25+b^2=144
We move all terms to the left:
25+b^2-(144)=0
We add all the numbers together, and all the variables
b^2-119=0
a = 1; b = 0; c = -119;
Δ = b2-4ac
Δ = 02-4·1·(-119)
Δ = 476
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{476}=\sqrt{4*119}=\sqrt{4}*\sqrt{119}=2\sqrt{119}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{119}}{2*1}=\frac{0-2\sqrt{119}}{2} =-\frac{2\sqrt{119}}{2} =-\sqrt{119} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{119}}{2*1}=\frac{0+2\sqrt{119}}{2} =\frac{2\sqrt{119}}{2} =\sqrt{119} $
| 2.96-2.8f=-7.92-3.6f | | 40=p(1+8) | | -6(1+x)=31-6x | | 7(2+n)=35 | | 4(2x+-3)=3+8x-11 | | 2x+7=(-12) | | n^2+2+10n-39=0 | | -30=w/9 | | 7-3s=16-4s | | 4/7/1/2=x | | -3x+9=39+7x | | (x+1)^2=3x+7 | | 35=-2v-15 | | 4-4t=-3-4t | | (x-5)(x+10)(x+20)=0 | | -2x+912-9)=2+9+2x | | 6b+5b+1=90 | | 3-6y=-5y+0 | | -4(-x–7)=x–20 | | -u/5=56 | | 2x=28-5 | | 5-2x+6=2x+11 | | 5(2c+6)=8 | | 2x(x+69)=180 | | -6/5x-2/5x=4/5+4/5 | | x–10=-2(-x–10) | | (17-x)xX-X=63 | | -3y-9=2y | | 23=2w-15 | | 8(x+2)+4=3x5(5+x) | | 3(3-p)-17=41 | | 10+6x=4x+16 |